
 dScriptdScript User Manual v4.04

dScriptdScript
User Manual Version 4.04

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 1

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Table of Contents
Documentation History..4
Please read!...5

Important changes from previous versions..5
Code migration to V4.xx from previous versions..5

Threads..5
gosub...6
goto...6

The cheat sheet, quick reference guide..7
Introduction...8
Getting started...9

Support files...9
Connecting the hardware..10
First program..10
Second program..11

dScript IDE...12
Version numbers..13
Compiler...13
Conditional Compiling...13
Project structure..14
Program Structure...15

Declarations..16
Instructions...16
Comments...16

Constant declarations...17
Variables..18

Local variables...18
Integer variables...18
Variable arrays..19
String variables...20

String parameters..20
string.Length..21
string.Size...21
string.Mid(0,3)...21
string.ToLower(0,3)...21
string.ToUpper(0,3)...21
string.GetNumAscii(Idx)..22
string.GetNumBinary(Idx, 4)..22
string.GetText(Idx)...23
string.BooleanEval()..24
string.CRC(length, polynomial)...25

String byte arrays..26
Non-volatile EEPROM variables...27

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 2

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Non-volatile Flash variables...28
System Variables...29
Functions..30

Parameter passing..31
Network Parameters...32

Using variables for the network parameters...32
Analogue & Digital I/O channels..34

Digital I/O...34
Analogue I/O...35
Flexible I/O...36

Operators...37
Arithmetic & bitwise operators..37
Assignment operators...37
Logical operators..38

Expressions..39
Numeric expressions...39
String expressions..40
Numeric variables in string expressions...40
Decimal, hexadecimal and binary formatting..40
Padding numeric output..41
Formatting negative numbers..42
Inserting control codes into a string..43

dScript commands...44
return...44
if - single statement execution...44
if - multiple statement execution..44
for, next..46
do loop...47
select case..48

Serial ports...50
Writing data to a serial port...50
Reading data from a serial port..52
Baud rate..53
Stop bits...54
Break...54
Parity..54

TCP/IP ports...55
TCP/IP server..55
TCP/IP client...58
Reading the MAC Address...60

UTC clock...61
HTTP web server...62

Web page security...66
Installing the password on your browser...67

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 3

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Logging out...68
Accessing your Webpage from the internet..70

Email...71
EasyMail...74

Multi-threading...75
What is multi-threading?...75
Thread commands..76

main..77
Performance...78
Notes...80

Documentation History

V2.20 Final release of the 2.xx series of dScript

v3.01 First, Final and only series 3 release.
Added functions to support ModBus RTU in the factory app.
Added TCP184 support

V4.01 Major update to the dScript language.
Removed support for labels, “goto” and “gosub” instructions.
Added support for thread safe functions with parameter passing and return.
Updated easymail to support user specified “from” address.

V4.02 Bug fix. Local variables were not correctly accessed in some cases,
affecting routines:

string.GetNumBinary, string.GetNumAscii, string.GetText, string.Mid,
string.ToUpper, string.ToLower, select/case, tcpip.Read, tcpip.Write,
tcpip.readMacAddr, easymail.Send.
All worked with Global variables,

v4.03 IDE updates
Support Multiple files in project.
Support multiple tabs in editor
Added conditional compile with #ifdef, #else and #endif.

v4.04 Functionality update. TCP server socket now transmits keepalives when
connections become dormant for 10 seconds. 6 unacknowledged packets at 10
second intervals will result in port closure.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 4

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Please read!

Important changes from previous versions
With version 4.xx dScript has been updated to allow functions with parameter passing.
Functions are thread safe, belonging to the thread that originally called them.

Functions (and threads) may have local variables that are not visible to other threads of
functions.

Floating code is no-longer permitted. All code must be contained within a thread or function
definition. Labels are no-longer supported, and as a result, the gosub instruction has been
retired in favour of function calls. The goto instruction has also been removed.

Code migration to V4.xx from previous versions

Threads
Threads are now declared in one operation. Previously you would use:

thread Rly1Thread const

Rly1Thread: Rly1 = on

threadsleep PulseTime

Rly1 = off

threadsuspend

The new definition is:

thread Rly1Thread(const)

Rly1 = on

threadsleep PulseTime

Rly1 = off

threadsuspend

endthread

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 5

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

gosub

Gosub is no-longer used because labels, which were the target for gosub calls, have been
removed.

Instead of:

gosub myCode

…

return

myCode:

do something

return

You now call a function:

myCode()

return

function myCode()

do something

return

endfunction

goto
It’s gone. Its just gone.

There are alternatives:
if then else
select case
for next
do loop

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 6

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

The cheat sheet, quick reference guide
Variable types System variables

int8 int16 int32 string system.despatchcounter

eeint8 eeint16 eeint32 eestring system.ModuleID

flint8 flint16 flint32 flstring system.VerMajor

Array's system.VerMinor

int8[w] int8[w,x] int8[w,x,y] int8[w,x,y,z] system.FlashPending

System.Random

Arithmetic operators Assignment operators

+ Addition = Assignment Logical operators

- Subtraction += Addition > Greater than

* Multiplication -= Subtraction >= Greater or equal

/ Division *= Multiplication < Less than

// Modulus /= Division <= Less or equal

<< Shift left //= Modulus == Equal

>> Shift right <<= Shift left != Not equal

& Bitwise AND >>= Shift right

| Bitwise OR &= Bitwise AND

^ Bitwise XOR |= Bitwise OR

^= Bitwise XOR

Command keywords

if then elseif else endif

thread endthread function return endfunction

for to next

do loop while until

select case else endselect

threadstart threadsleep threadsuspend

I/O objects

analogport digitalport flexport serialport

tcpip utc http email

easymail

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 7

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Introduction

This document describes the dScript programming language that underpins all of our dScript
modules.

dScript, derived from devantech Scripting language, is a multi-threaded language for our
internet connected modules. dScript compiles to efficient byte codes which are interpreted by
the modules on-board runtime firmware. dScript is an editor, compiler and programmer for all
dScript enabled modules.

Although dScript is not BASIC, the syntax of dScript will be familiar to anyone who has used
Visual Basic or the small Basic chips and modules that are available.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 8

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Getting started
This section will guide you through downloading and installing the dScript IDE, connecting a
dScript module, compiling and uploading firmware to the module and getting a first look at
controlling the module from a webpage.

As from version 3.01, the dScript ide is available for Windows, Linux and macOS. Download
the version for your system. For Linux select the deb or RPM version is available

PC requirements
Windows 7 or later, Linux or macOS
Network connection for viewing web pages
USB port to program the module.
You will also need an HTML editor of your choice.

Download and install the dScript IDE software as appropriate for your OS. You should remove
the old version before installing the new one.

Support files
http://www.robot-electronics.co.uk/files/dscript.zip

The dScript support files are supplied as a zip file that can be download and unzipped into a
temporary folder, inside the temporary folder will be four folders:

Documentation
Examples
USBdriver
Utilities

The Documentation folder contains a copy of all dScript manuals. Note that IDE version
numbers will match documentation version numbers. The IDE version can be found in
Help About.→

The USBdriver folder contains the USB com port driver for the modules. This is only required
for Win7. Win10, Linux and macOS will use its own built in drivers.

Copy the Examples directory to a convenient location on your computer, it contains both
dScript source code examples and associated web pages.

The utilities folder contains the Devantech Module Finder as well as C# and java examples for
all dScript modules.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 9

http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/files/dscript.zip

 dScriptdScript User Manual v4.04

Connecting the hardware
Connect an Ethernet cable from your network to the Ethernet connector on the dScript module,
then attach a USB cable from the PC to the USB connector on the module. Now plug in the
12vdc power supply into the DC jack connector and switch on. If prompted by windows
navigate to the USBdriver folder and install the USB driver.

Now run the dScript IDE and it should find your module and report its firmware version in the
tool strip.

If it states “none”, go to Module Select port and select the port you have the module → →
connected to. This will be remembered for next time.

First program
A nice simple and colourful first program is the FlashingLeds example. Click the open button
(or go to File->Open) and navigate to Examples->FlashingLeds and open the FlashingLeds.dsj
file. *.dsj are dScript project files. The white triangle on the green button is the build, load and
run button, click this to compile and run the program on the module. You should see a non-
repeating pattern of Led flashing (well it does repeat, but you'll get bored watching it long
before it does).

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 10

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Second program
Lets try something more interesting, open the WebsiteGauges project from the examples
directory. Look at the program and note the tcpip.ip address, you may need to change this and
the subnet mask below to suit your network. Specifically, you need to make sure the PC is on
the same subnet as the module. In this case 192.168.0.x and that the IP address is available.
Once you've checked the IP address, you can build and run the program. When the process is
completed you should now run your web browser and enter address 192.168.0.137/index.htm.

The left gauge measures the board temperature using the on-board temperature sensor. The
right gauge is the boards supply voltage.

Click the buttons, and the relays on the board will toggle.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 11

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

dScript IDE
The dScript IDE (Integrated Development Environment) is used to write the programs that run
on the modules, it has syntax highlighting to make the programs easier to read and invokes
the program and website compilers. All threads and functions are listed in the right panel and
are for easy navigation of your code. Clicking a name will take you to that section in the main
editor window. The message panel shows the status of the compiler, programmer and any
errors found.

Most of the buttons should be fairly obvious to you, they are:

New, Open, Save, Swap, Undo, Redo, Find, Comment & Uncomment.

The Swap button swaps between the current and previous projects you have opened, this is
useful when referring or copying from another project. The File menu also includes "Save As",
and the Find button includes options for replacing words. The Undo and Redo buttons will be
greyed out when there is nothing to undo/redo.

The comment buttons Comment & Uncomment are for selected blocks of text, which is very
useful when testing programs as you can easily choose to ignore sections.

After the text box showing which module is currently connected, is the build button (blue tick),
this will build your program and website but will not upload them to the module, reporting any
errors found.

The white triangle on the green background is the build, load and run button. It first checks
the modules runtime version and if this is different to that required by this version of the
editor, it will automatically upload the new firmware. The user program and any associated
website are compiled and uploaded to the module, and run.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 12

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Version numbers
The version numbers of the Manual (shown top right in the header above), the IDE and the
module firmware should all be synchronised and show same version.

For example:

User Manual v4.03
IDE v4.03 (found in Help->About)
Module Firmware v4.03 (displayed in IDE toolbar when connected to module)

A copy of the module firmware is built into the IDE, it is compared to the module version when
you load your dScript program, if needed it will then automatically update the module firmware
to the IDE's version. Therefore any updates are taken care of automatically, you can even
revert to a previous version by using the older IDE.

Compiler
There are actually two compilers.

The first compiles your code, then it translates your program into a byte code sequence which
is loaded onto the module.

The second compiles your website to an efficient form to store in the on board flash chip. The
compiler also inserts the necessary AJAX scripts which keep live data refreshed on the web
page, additionally it inserts the security scripts which prevent unauthorised devices accessing
your module.

Both compilers are built into and are part of the dScript editor.

Conditional Compiling
#ifdef
#else
#endif

These three compiler directives may be used to conditionally compile sections of code. See the
“FlashingLeds” example where we use them in the common_io file to select the correct I/O
definitions for the various modules.

For example:

#ifdef dS1242 || dS2824 || dS3484 || dS378
 analogport TS1 100 ; on-board temp sensor
 analogport PSU 101 ; DC power voltage
#endif

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 13

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Project structure
dScript projects are a folder containing a project file (*.dsj, one or more code files (*.dsi) and
a sub folder for the website files. The File New Project dialog will create all this for you. This →
will contain two code files, common_io.dsi has all the definitions for the relays, I/O etc. The
other has the same name as the project and contains an empty “main” thread ready for you to
start writing. The starting point for your code is the thread "main". It need not be the first
thread, but you must include it somewhere in your code. You can create new code files as
required, or import code files from other places. Imported files are copied to your project
folder, the original is untouched.

Right clicking anywhere in the editor window and selecting insert from the sub menu will give
you a selection of blank templates for many dScript commands and functions.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 14

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Program Structure
All dScript programs begin with the declarations needed, followed by the program instructions.

The declarations are used to give meaningful names to all the variables and I/O ports that you
will be using. The instruction section contains all the code to make your application work, the
starting point for your code is the thread "main". It need not be the first thread, but you must
include it somewhere in your code.

If you are using the common_io.dsi file that is automatically generated when you create a new
project, make sure it is first in the compile order. You set the compile order in the project
settings dialog.

The project settings dialog lists the code files in the order they will be compiled. Use the
up/down arrow buttons to change the order. You can also select which files will be compiled.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 15

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Declarations
This section is used to declare the variables and I/O you are going to use.

An example:

string s1[100]
serialport LCD05 1 10 90

Instructions
thread main(const)
 s1 = " Hello World"
 s1[0] = 12
 s1[1] = 19
 s1[2] = 4
 LCD05.Write(s1,0,s1.Length)
 threadsleep 300
endthread

Comments
Comments may be added to your program in order to document what you are doing.

A comment begins with a semicolon ;

All characters from the ; until the end of the line are ignored by the compiler, they are not
downloaded to the board and do not take up program or data space.

Comments are highlighted in green within the editor.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 16

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Constant declarations
const Minus17 -17
const LogArraySize 24

int32 TemperatureLog[LogArraySize]
int32 StartTemp

Declaring numbers that can be used many times in your program as const can save time if
you need to change it. Use the const anywhere in your program where you would otherwise
use the number.

thread main(const)
 StartTemp = Minus17
 ...

Constants can also have an expression as the parameter. All elements of the expression must
themselves be constant, which means you cannot use variables.

const FILTCTRL 4
const FILTREF 1<<(FILTCTRL-1)
const FILTMOD 1<<FILTCTRL

All expressions are evaluated from left to right, there is no operator precedence. If you need to
change the order of evaluation then enclose that section in parenthesis. In the example above
(FILTCTRL-1) is evaluated first and the result used to shift the 1 left by that many places. Any
named constants used in the expression must have already been declared.

Note that all constant expressions are evaluated by the compiler when the program is
compiled, not on the board at runtime.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 17

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Variables
The are two variable types, integer variables and string variables. Variable names must start
with a letter and may be followed by letters (A-Z, a-z), digits (0-9) or an underscore (_).
No other characters are permitted in variable names. All variables are global and may be
accessed from any subroutines or threads.

Local variables
Local variables are variables that are declared within a thread or function. They exist only while the
function is running and cannot be accessed from outside the function. They are created when the
function is called and destroyed on return. Therefore you cannot store data in a local variable and
expect it to persist between function calls. On entry to a function local variables are not initialised
and contain random data.

If a local variable has the same name as a global variable then it is the local variable that is used
and the global variable is not available to that function.

For each call to a function, a new set of local variables is created. Multiple calls to the same function
will not interfere with each other, even if they are called at the same time from different threads.

Integer variables
There are three types of integer variables used to store numbers.

int32 X2
int16 X3
int8 X4

int32 integer variable types are stored as 32 bit signed numbers. The range of values that can
be stored is from -2147483648 to 2147483647.

Variables of type int16 hold 16 bit signed numbers. The range of values that can be stored is
from -32768 to 32767.

Variables of type int8 hold 8 bit signed numbers. The range of values that can be stored is
from -128 to 127.

It is recommended that 8 and 16 bit variables are used only when you absolutely must. This is
likely to be when locating variables in eeprom memory which is limited. For general use there
is no point in trying to save memory if your application is only going to be using part of it.
Internally dScript uses 32 bit numbers for all calculations anyway, so always try to use int32
types.

You can have any number of integer variables up to the limit of the on-board RAM memory.
Variables can be named as you choose. Short names like x and y are fine, but there are no
built in limits to the length of the name, so be descriptive in your choices. Variable names are
case sensitive so:

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 18

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

int32 mycounter

int32 myCounter

are two different variables.

Variable names are not loaded into the module. All variables are compiled to an index code, so
long variable names neither consume valuable memory space on the module or slow down
program execution.

Variable arrays
A variable array is like a row of variables. To declare an variable array place the size of the
array in square brackets immediately after the variable name.

int32 TemperatureLog[24]

This declares a row of 24 individual variables (or elements) which can be accessed by using an
index number. The first element is at position 0 and the last element is at position 23 (not 24).

To read or write an array element, specify the element number in the square brackets.

x = TemperatureLog[2]
TemperatureLog[2] = 19

The array index is checked at runtime and any attempt to write to an element outside the
bounds of the array is ignored and attempts to read an element outside the bounds of the
array will return 0.

The size of an array is limited only by the available memory.

Arrays may have multiple dimensions. To declare a two dimensional array place the sizes of the
dimensions, separated by a comma, in square brackets immediately after the variable name.

int32 myGrid[10,10]

This declares a two dimensional array with 10 elements (numbered 0-9) on each side of the
grid. 100 elements in total. When reading or writing, both dimensions must be specified.

x = myGrid[3,7]
myGrid[3,7] = 123

Arrays may have up to 4 dimensions.

int32 my3Dgrid[10,10,10]
int32 my4Dgrid[10,10,10,10]

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 19

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Arrays may also be used with int8 and int16 variable types.

int8 dataLog[10000]
int16 HourlyTemps[24]

String variables
A string variable is used to hold ASCII character strings. The length of the string variable may
be up to the lesser of 65535 bytes or the remaining memory. The size of a string variable is
declared by placing the size in square brackets immediately after the name.

string myStringName[100]

declares a string called myStringName which is can hold up to 100 characters.

You can have any number of string variables up to the limit of the on-board RAM memory.
Strings can be named as you choose, there are no built in limits to the length of the name so
be descriptive. string names are case sensitive so:

string myStringname[100]

string myStringName[100]

are two different variables.

String variable names are not loaded into the module. All variables are compiled to an index
code, so long variable names neither consume valuable memory space on the module or slow
down program execution.

String parameters
Summary;

string.Length

string.Size

string.Mid(0,3) Extracts middle text from string. (start, count)

string.ToLower(0,3) Same as Mid, also converts result to lower case

string.ToUpper(0,3) Same as Mid, also converts result to upper case

string.GetNumAscii(Idx) Gets number from ASCII string, returns int, bumps idx.

string.GetNumBinary(Idx, 4) gets number from binary string, bumps idx, bytes to get.

string.GetText(Idx) extracts text from string, from idx to 1st non-alpha char.

string.BooleanEval() evaluates boolean expression, returns true(1) or false(0)

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 20

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

string.Length

string.Size

These return the length and size of a string as an integer.

string myBuffer[100]
int32 Length
int32 Size

myBuffer = "Hello World"
Length = myBuffer.Length
Size = myBuffer.Size

Length will have the length of the string myBuffer, in this case it is 11,
Size will have the original declared size of myBuffer, 100 in this case.

string.Mid(0,3)

string.ToLower(0,3)

string.ToUpper(0,3)

Mid(position, count) Returns count characters from position of a string

string myNewBuff[100]
string myOldBuff[100]

myOldBuff = “engineer”
myNewBuff = myOldBuff.Mid(2,3)

This will result in myNewBuff containing “gin”.
Note that the starting index is zero based, so the 'g' is at position 2, not 3.

Parameter 2 is optional, in that case text from position to end of text is returned.
myNewBuff = myOldBuff.Mid(4) will load myNewBuff with “neer”

Both parameters may be omitted.
myNewBuff = myOldBuff.Mid() will copy all text from myOldBuff into myNewBuff.

ToLower and ToUpper work in an identical way to Mid, except the extracted text is converted to
lower or upper case.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 21

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

string.GetNumAscii(Idx)

Gets number from ASCII string and returns an integer. Any spaces at the beginning of the
number are skipped. The ASCII number is acquired up to the first non-digit character and the
index variable bumped to that point.

string myBuffer[100]
int32 idx
int32 rly
idx = 5
myBuffer = “Relay 12 on”
rly = myBuffer.GetNumAscii(idx)

This will result in rly containing the number 12 and idx containing 8.

string.GetNumBinary(Idx, 4)

Gets number from binary string and returns an integer. Any spaces at the beginning of the
number are skipped. Idx is the position in the string. The 2nd parameter is the number of bytes
in the number and may be 1, 2 or 4. Idx is incremented to the position after the last byte
acquired.

string myBuffer[100]
int32 idx
int32 pos
idx = 0
myBuffer[0] = 12
myBuffer[1] = 34

pos = myBuffer.GetNumBinary(idx, 2)

This will result in pos containing 3106 and idx will be 2.
(3106 because 12 is 0x0c and 34 is 0x22, so the 16 bit number is 0xc22 or 3106 decimal).

This instruction is useful for extracting the parameters from a modbus command stream.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 22

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

string.GetText(Idx)

Gets text from an ASCII string. Any spaces at the beginning of the number are skipped. This is
different from string.Mid which extracts a fixed section of text. String.GetText can extract a
variable length of text from the Idx position to the first non-alphanumeric character. It can be
used for extracting a word of unknown length.

string myNewBuff[100]
string myOldBuff[100]
int32 idx

myOldBuff = “Relay 2 on”
idx = 7
myNewBuff = myOldBuff.GetText(idx)

This will result in myNewBuff containing “on”.

string.GetNumAscii(Idx) and string.GetText(Idx) are useful for extracting commands from an
incomming command string.
string cmdBuff[100]
string cmd[100]
string action[100]
int32 relayNum
int32 idx

cmdBuff = “relay 2 on”
idx = 0
cmd = cmdBuff.GetText(idx)
relayNum = cmdBuff.GetAscii(idx)
action = cmdBuff.GetText(idx)

Will result in cmd containing “relay”
relayNum containing 2

action containing “on”

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 23

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

string.BooleanEval()

This will evaluate a boolean equation in the string and returns true(1) or false(0). We use this
in the supplied application to provide some automation to the relays and also to trigger emails.

The three types that can be used in boolean equations are:
1. Relays, R1 – R24
2. Digital I/O's, D1 – D8
3. Analog inputs, A1 – A8

The simplest equation is R1. This is true when R1 is active and not true when R1 is in-active. If
you enter R1 in the relay 2 automation box it will simply follow whatever R1 does.

The exclamation mark ! is used as a “not”. So !R1 is true when relay 1 is in-active.
Enter !R1 in the relay 2 automation box it will follow the opposite of R1. Relay 2 will be active
when relay 1 is inactive.

The same applies to the digital I/O's. Enter D2 in the relay 2 automation box and the relay will
follow the input.

Analog inputs are compared with a value to obtain a true/false boolean result. In this example
we have set I/O8 to be an analogue input with a 5v reference. Then we can enter A8<1000 in
the relay2 automation box. This will turn on relay 2 when the input A8 falls below 1000. If A8
is connected to a temperature sensor and R2 controls a heater – well, you get the idea. Analog
comparisons use the “less than” < and “greater than” > symbols only. There is no equal or not
equal. Checking for equality on a potentially jittery analogue input is not really useful.

As well as “not” !, you can use “and” & and “or” | in your equations.
Enter D2&D3 and the result is true only when both D2 and D3 are active.
Enter D2|D3 and the result is true when either D2 or D3 is active.

What happens here:
D2|D3&D4
The answer is that boolean expressions are evaluated left to right. So D2 is ORed with D3 and
the result ANDed with D4. You can change the order of precedence by using parenthesis ().
D2|(D3&D4)
will now and D3 with D4 and the result is Ored with D2.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 24

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

To demonstrate a real world example, take the analog example above where we compared A8
with 1000 to operate R2. Whilst this would work its a not a good solution as the relay would
jitter badly when A8 was jittering between 999 and 1000. What we need is some hysteresis. To
do that we will use R2 in its own equation.
(A8<1000&!R2)|(A8<1234&R2)
Assume R2 in inactive (off). The 2nd half of the equation (A8<1234&R2) will have no effect.
So when A8 falls below 1000 the relay comes on. Now the 2nd half of the equation is true, and
will stay true until A8 climbs above 1234.
So the relay becomes active when A8 is below 1000 and inactive above 1234.
We have hysteresis!

string.CRC(length)
string.CRC(length, polynomial)

This will return the CRC of the string. Length is the number of bytes, starting at zero, to
perform the CRC calculation on.
Optionally the polynomial may be specified. The default polynomial if none is specified is
0xA001.

The default polynomial is x16+x15+x2+1 (0x8005) reflected to 0xA001, also known as
CRC16-ANSII and is the one used for MODBUS.
A different polynomial can be used by specifying its reflection in the second parameter.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 25

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

String byte arrays
Strings can be used as byte variable arrays. Array elements are unsigned bytes and can hold
positive values between 0 and 255. Strings used as byte arrays cannot store negative values.

string myByteArray[10]

The individual elements of this string may be accessed by

myByteArray[0] = 5

which will load the number 5 into the first element of the array. The elements of the 10 byte
array are numbered 0 to 9. Note that the size of the index is checked at run time, not compile
time.

string myByteArray[10]

int32 idx

int32 x

myByteArray[idx] = 5

x = myByteArray[idx]

The runtime module will check the value in idx is within the range for the string. Outside of this
limit the instruction will do nothing in the first case and load x with zero in the second.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 26

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Non-volatile EEPROM variables
dScript modules have a 512 byte EEPROM for storing a small number of variables when power
is switched off.

Both string and integer variables can be located in this non-volatile memory. To declare a non-
volatile variable use eeint32, eeint16 or eeint8. For example:

eeint32 HourCounter

To declare a 4 byte array for emulating latching relays use eeint8

eeint8 RelayStore[4]

Only variables and strings can be stored in non-volatile memory, I/O ports and other objects
cannot.

When you read or write to a non-volatile variable, you are really reading and writing to a cache
memory. The underlying EEPROM is only written when something actually changes. This means
you can update your variables as often as you like with the same value. For instance to update
"RelayStore" with the status of Relay1 you could put the following in a loop.

if(Rly1) then RelayStore[0] = 1 else RelayStore[0] = 0 endif

The loop may be executed as fast as you wish, only a change in the state of RelayStore[0] will
get written to the EEPROM. As EEPROMs have a limited write endurance, this prevents
unnecessary wear.

A simple and eloquent method to update RelayStore is to give it its own thread.

eeint8 RelayStore[2]

thread RelayUpdate(50)
if(Rly1) then RelayStore[0] = 1 else RelayStore[0] = 0 endif
if(Rly2) then RelayStore[1] = 1 else RelayStore[1] = 0 endif
threadsuspend

endthread

thread main(const)
if(RelayStore[0]) then Rly1 = 1 else Rly1 = 0 endif
if(RelayStore[1]) then Rly2 = 1 else Rly2 = 0 endif
threadstart RelayUpdate

do
... Do things ...

loop
endthread

In the start up section of “main” there are a couple of lines of code to initialise the relays with
their stored settings. The RelayUpdate thread is then started which will keep the relays
updated every 50mS.

Take care when making variables non-volatile. EEPROMs have a limited write endurance of
about 1000000 (1 million) and if you change the values too frequently you can quickly reach

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 27

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

the end of their life. dScript can write a new EEPROM value every 320mS. If you do so you will
reach end of life for the EEPROM in less than 4 days!

Try to limit updates. An hour counter which is updated every 10 minutes will last 19 years. The
EEPROM used has a minimum write endurance of 1000000, it could be much more.

Non-volatile Flash variables
All modules have 8k (8192) bytes of flash memory reserved for variables. Flash memory has
less endurance than EEPROM at just 100,000 erase/write cycles. This memory should therefore
be used for configuration data that does not change often.

Flash memory variables are declared in a similar war to EPROM variables, in this case by
putting fl at the beginning of the variable type. So;

int32 normal int32 variable located in RAM
eeint32 int32 variable located in EEPROM
flint32 int32 variable located in Flash memory

All flash variables are read at power-up into cache RAM. Flash variables may be read as often
as you wish as the data is coming from the cache at full speed.
When you write to a flash variable, you will be writing to the cached copy. This will also start a
5 second timer running, or if the timer is already running it will re-start it to 5 seconds. This
gives you the chance to update all required variables. 5 seconds after the last write, the actual
write to flash will automatically take place, updating the entire block in one go. Its done that
way because the flash chip can only erase an entire 8k block, not individual bytes or variables.
We must therefore erase and re-write the full 8k block.

There is a system variable that you can read to check when the flash write is done.
system.FlashPending
Zero means the flash write is done.
Non-zero means the time is counting down to the pending write.

Make sure you do not switch off the module before the flash gets written or you will lose all
your changes.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 28

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

System Variables

System variables are special purpose variables.

system.DespatchCounter

This is a counter that increments each time a dScript instruction is executed. It does not
matter which thread is executing, all instructions are counted. The DespatchCounter cannot be
written to. When read, its current value is returned and then the DespatchCounter is reset to
zero. See the Performance chapter for details on the use of this variable.

system.ModuleID
This read only variable contains a number identifying the module.

Module ID

dS3484 30

dS1242 31

dS2824 34

dS378 35

TCP184 36

system.VerMajor
System software major version, read only. For example 2

system.VerMinor
System software minor version, read only. For example 17, so version would be 2.17

system.FlashPending
The number of mS to go before a flash write takes place. Its set to 5 seconds (5000mS) when
a flash variable is written.

system.Random
Returns a 32-bit random number.

System.MyIP
Returns an int32 representing the ip address. The MyIP example shows how to get and convert
this int32 into a dot-decimal string.

0x5200A8C0 is 192.168.0.82
Note the high byte 0x52 is the last decimal (82) in the string.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 29

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Functions

A function is just a named section of code that you can call from other parts of your program.
It is declared like this:

function [Return type] Function Name([Parameter1, … , Parameter n])

….

endfunction

All functions start with “function” and end with “endfunction”.

The return type and the parameters are optional. So in its simplest form a function call is just:

GoDoSomething()

A function with a return type can return a value. The following will read an analogue temperature
and convert it to degrees C.

function int32 GetTemperature()

int32 BrdTemp

 BrdTemp = ((TS1*3223)-500000)/1000

 return BrdTemp

endfunction

The caller can get the temperature with:

int32 AirTemp
AirTemp = GetTemperature()

Parameters are the way to pass data to a function. For example, to add two numbers:

int32 result

result = AddNumbers(2, 3)

And the function would be declared as:

function int32 AddNumbers(int32 a, int32 b)

 return a+b

endfunction

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 30

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Parameter passing
Parameters such as numbers or integers are passed by value. This means that it is the value only
that is passed to the function which will then store the value ready for use. If you change the value,
only the local copy will change. The original variable will be unchanged.

String and array parameters are passed by reference. It is not the data, but a reference to the
original variable that is passed. The function does not have a copy, instead accessing the original.
Any changes will be seen by the caller.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 31

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Network Parameters
There are a number of network specific parameters that need to be setup in your program. The
following three parameters are required in all cases where you are using Ethernet.

tcpip.hostname "myModulesHostname"

This is the name of the module as it will be seen on your network

tcpip.ip "192.168.0.136"

The module has a single IP address that is used for both web pages and direct tcp/ip
communications. If you do not specify an IP address the module will attempt to obtain one
from your networks DHCP server. This is generally a bad idea as the DHCP server can assign a
different IP address each time, and you really need it to be fixed. If in doubt ask your network
administrator to assign you a permanent IP address and mask for the module.

tcpip.mask "255.255.255.0"
This is normally set as above. If in doubt ask you network administrator to assign you a
permanent IP address and mask for the module.

tcpip.port 17494
If you want to use a tcp/ip server then you will also require a port number. Choose an unused
high number in the range 2000 up to 65535 for this.

tcpip.dns1 "192.168.0.1"
tcpip.dns2 "8.8.8.8"
tcpip.gateway "192.168.0.1"

If you are going to be using a tcp/ip client to control other modules on the internet then you
will need to set up a gateway address. This is normally the address of your internet router.

The DNS server addresses are required if you are going to be using names instead of IP
addresses. Again, this will likely be your routers address but you can also use Google's DNS
server as shown in dns2 above.

Using variables for the network parameters.
eestring System_IP[16]
tcpip.ip System_IP

These MUST be located in eeprom by using eestring or flash by using flstring rather than
string.

This is because the parameters are loaded before your dScript program starts running and
your program would never get the chance to initialize them. Variables in eeprom/flash are
available immediately.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 32

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

The eeprom variables must be declared before the tcpip parameter that uses them.

eestring System_HostName[21]
eestring System_IP[16]
eestring System_SubNet[16]
eestring System_Gateway[16]
eestring System_DNS1[16]
eestring System_DNS2[16]
eeint32 System_CmdPort

tcpip.ip System_IP
tcpip.mask System_SubNet
tcpip.hostname System_HostName
tcpip.port System_CmdPort
tcpip.dns1 System_DNS1
tcpip.dns2 System_DNS2
tcpip.gateway System_Gateway

All eeprom variables are assigned addresses in eeprom in the order they are declared in the
program, so to be sure the parameters do not move in memory don't declare any eeprom
variables before the tcpip parameters. Make sure these ones are first so any following eeprom
variables will not affect their position.

The use of variables for the tcpip parameters allows your program to update the network
configuration. This will then take effect next time the module is reset.

To initialize your network, place the following at the start of your dScript program.

System_HostName = "SetupTest"
System_IP = "192.168.0.123"
System_SubNet = "255.255.255.0"
System_Gateway = "192.168.0.1"
System_DNS1 = "192.168.0.1"
System_DNS2 = "8.8.8.8"
System_CmdPort = 17494

That will initialize the variables for use after the next re-boot. After that you can comment out
or delete the initialization.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 33

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Analogue & Digital I/O channels
These consist of the relays, digital I/O's and analogue inputs as well as on-board I/O such as
the LED's, temperature and voltage analogue inputs, and the virtual I/O's which can be used
as flags.

Digital I/O
All Digital I/O such as relays, led's, general purpose I/O (on the dS1242 & dS3484) or virtual
I/O are declared with the digitalport declaration. See module documentation for specific details
of the port numbers.

Examples:

digitalport Rly1 1
digitalport Rly2 2

digitalport LedBlue 33
digitalport LedGreen 34
digitalport LedRed 35

digitalport Flag1 100
digitalport Flag2 101

To output to the port just write:

Rly1 = on
LedBlue = on
Rly2 = off
Flag1 = on

There are 64 virtual I/O ports in the range 100 to 163. These are not associated with any real
I/O port, they exist only in the modules memory. Flag1 and Flag2 above are examples of
virtual I/O. They are useful to hold the state of remote I/O, of just as flags to control program
flow.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 34

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Analogue I/O
All Analogue inputs on the dS1242 & dS3484 are declared with the analogport declaration (All
other modules use flexport – see below). See Module documentation for specific details of the
port numbers.

Examples:

analogport TS2 2 ; ext temp sensor
analogport TS1 100 ; on-board temp sensor
analogport PSU 101 ; DC power voltage

Analogue ports do not store any values, so each time you refer to the port a new analogue to
digital conversion is performed.

int32 Volts
Volts = PSU

Will convert analogue channel PSU and store the result in the variable Volts.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 35

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Flexible I/O

The I/O on the dS378, dS2824 and TCP184 modules can be either digital or analogue input.
They are defined using the flexport command rather than digitalport or analogport. Just
the I/O lines on these modules use flexport. All other ports such as the on-board LEDs use
digitalport and the on-board temperature/voltage sensors use analogport.

The dS1242 and dS3484 modules do not have flexible I/O and cannot use the flexport
command. The modules should only use digitalport or analogport commands to define the
I/O's.

The flexport command is similar to the digitalport and analogport commands, except that
one additional parameter is required to define the ports function. This may be one of the 5 pre-
defined constants shown below.

Command Name Port Function

flexport IO1 1 digitalpullup
flexport IO2 2 digitalnopullup
flexport IO3 3 analogref3 ; dS378 only
flexport IO4 4 analogref4 ; dS2824 only
flexport IO5 5 analogref5 ; dS2824 only

The dS378 can only use analog input type analogref3 because is has a 10-bit, 0-3.3v input
range. The dS2824 has a 12-bit input powered from a 5v supply. It can use the supply as a
reference (analogref5) giving a 0-5v input range or an internal 4.096v reference (analogref4)
for a 0-4.096v range.

The flexport command fixes the I/O type at the start of the program and they are fixed for
the duration of the programs life. They cannot be changed “on-the-fly”.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 36

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Operators

Arithmetic & bitwise operators

Symbol Operation Example

+ Addition X = A + B

- Subtraction X = A - B

* Multiplication X = A * B

/ Division X = A / B

// Modulus (remainder of a division) X = A // B

<< Shift left (0 shifted into lowest bit) X = A << 3

>> Shift right (sign bit extended into highest bit) X = A >> 3

& Bitwise AND X = A & B

| Bitwise OR X = A | B

^ Bitwise XOR X = A ^ B

Assignment operators

Symbol Operation Example

= Assignment only X = A

+= Addition X += A

-= Subtraction X -= A

*= Multiplication X *= A

/= Division X /= A

//= Modulus (remainder of a division) X //= A

<<= Shift left (0 shifted into lowest bit) X <<= 3

>>= Shift right (sign bit extended into highest bit) X >>= 3

&= Bitwise AND X &= A

|= Bitwise OR X |= A

^= Bitwise XOR X ^= A

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 37

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Logical operators
Logical operators return true or false.

Symbol Operation Example

> Greater than A > B

>= Greater or equal A >= B

< Less than A < B

<= Less or equal A <= B

== Equal A == B

!= Not equal A != B

An example of using logical operators is the “if” command.

if A > 5 processA()

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 38

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Expressions
Expressions are a sequence of variables and operators. They are used to assign values to
either numeric or string variables.

Numeric expressions
X = A + B

This will add the variables A and B together and assign the result to variable X. An expression
may have any number of operations.

X = A + B * C

Expressions are always evaluated from left to right. No precedence is given to multiply and
divide as some compilers do. If A=2, B=3 and C=4 then the expression above will yield 20.

2 + 3 = 5

5 * 4 = 20

Parenthesis may be used to change the order the expression is evaluated.

X = A + (B * C)

will give the result 14

This following expression will use the raw value from the ADC (Analogue to Digital Converter)
and scale this to read temperature in degrees C.

Temperature = ((ADC2*3223)-500000)/10000

Although the parenthesis is not actually required here as we want to evaluate from left to
right, it is included for clarity. The following works just as well:
Temperature = ADC2*3223-500000/10000

X = X + 1
X += 1

The above expressions are functionally identical

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 39

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

String expressions
The ~ operator is used to join two strings together to make one string.

S1 = “This is ”
S2 = “compiler!”
S3 = S1 ~ “the dScript ” ~ S2

results in S3 containing “This is the dScript compiler”

Numeric variables in string expressions
Numeric variables can be included in string expressions.

X = 24
Y = 31
S1 = “Variable X contains ” ~ X

results in S1 containing “Variable X contains 24”

S1 = “Look at this -> “ ~ X + Y

results in S1 containing “Look at this -> 55“
The + in string expressions is addition, NOT concatenation.

Decimal, hexadecimal and binary formatting

By default variables are placed in strings in decimal format as above. They can also be inserted
in hexadecimal or binary formats. To do this place the control character in curly braces
immediately before the variable.

S1 = “X in hex format is “ ~ {H} X

results in “X in hex format is 18“

or

S1 = “X in binary format is “ ~ {B} X

results in “X in binary format is 11000“

and you can use decimal

S1 = “X in decimal format is “ ~ {D} X

results in “X in decimal format is 24“

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 40

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Padding numeric output

Sometimes when displaying numeric output, you will want to use a constant width, regardless
of the number. To achieve this just add a number following the format control character.

{D3} will display the number as three digits.

 4

 34

234

6234

That worked well except for the last number. If a number is larger than the number of places
allocated it will use as many as needed to display the result. Make sure you plan for the largest
expected number. Using {D4} here will work.

 4

 34

 234

6234

Numbers can also be preceded with 0 instead of a space. Put a 0 between the control character
and the pad count, like this {D04}

0004

0034

0234

6234

X = 42

S1 = “Variable X contains ” ~ {B08} X
results in “Variable X contains 00101010“

S1 = “Variable X contains ” ~ {B04} X
results in “Variable X contains 101010“

S1 = “Variable X contains ” ~ {D04} X
results in “Variable X contains 0042“

S1 = “Variable X contains ” ~ {H04} X
results in “Variable X contains 002A“

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 41

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Formatting negative numbers

When the number is negative a '–' sign is placed in front of the number. If you are specifying a
width then this '–' sign counts as one of your characters.

X = -59
S1 = “Variable X is “ ~ {D} X
results in “Variable X is -59

S1 = “Variable X is “ ~ {D04} X
results in “Variable X is -059

The '-' sign is never displayed when formatting in binary or hexadecimal formats. This is
normal, because when using binary or hex you want to see what is contained in that variable
without regard to what the value represents. As the variables are 32 bits wide the full 32 bit
value is used.

S1 = “Variable X is “ ~ {H02} X
results in “Variable X is FFFFFFC5

S1 = “Variable X is “ ~ {B08} X
results in “Variable X is 11111111111111111111111111000101

If you are certain your value is contained in a smaller number of bits then the upper bits can
be masked out. For example you may want to display the value that has come in from a serial
port. You know this is only 8 bits so the upper bits can be masked out with:

X = X & 0x000000FF
which is the same as:
X = X & 0xFF

now,

S1 = “Variable X is “ ~ {H02} X
results in “Variable X is C5

and,

S1 = “Variable X is “ ~ {B} X
results in “Variable X is 11000101

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 42

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Inserting control codes into a string

The {c} control is used to insert a specific byte into your string. This is useful for inserting
things like CR/LF at the end of a line.

S1 = “Ok” ~ {c}13 ~ {c}10

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 43

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

dScript commands

return
return is used at the end of a function. It will return any data following the return statement.
It can be used on its own, or may be followed by an expression.

return variableName
will return the data contained in the variable “variableName” back to the caller.

if - single statement execution
The "if" command is used to make a decision on what to do next. The simplest form of the if
command to conditionally execute a single instruction.
if <condition> statement.
if A > B DoSomething()
however any single instruction may be executed.

This simple form of the if command does not require endif and cannot use else to provide an
alternative operation.

if - multiple statement execution
the syntax of the if command is:

if <condition> then

 statements

elseif <condition>

 statements

else

 statements

endif

The compiler used the "then" keyword that follows the <condition> to determine if this is the
single or multiple format of the "if" statement.

The "elseif" command can follow "then" or "elseif" commands and must terminate with "elseif",
"else" or "endif".

The "else" command can follow "then" or "elseif and must finish with the "endif" command.

The final block of statements must be terminated with the "endif" command.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 44

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

An example:

LedRed = off
LedBlue = off
LedGreen = off
x = 2
if x == 1 then
 LedBlue = on
 a = 21
elseif x == 2
 LedRed = on
 a = 45
else
 LedGreen = on
 a = 193
endif

The “if” condition may have multiple comparisons separated with “and” or “or”.

if a=3 and b=5 or c=7 then

The expression is evaluated left to right.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 45

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

for, next
The for/next commands are used to execute a set of instruction a specified number of times.
The syntax is:

for <variable> = start to end

 statements

next

An example:

for X = 1 to 10 ; X counts up each loop
 A = A + 1
next

If end is greater than start, the count will increment by one each loop. If the start is greater
than end the count will decrement by one each loop;

for X = 10 to 1 ; X counts down each loop
 A = A + 1
next

for, next loops may be nested like this:

for X = 1 to 10 ; outer loop
 for Y = 1 to 10 ; inner loop
 A = A + 1 ; A gets incremented 100 times (10 loops of 10)
 ... more statements ...
 next
next

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 46

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

do loop
The do loop will execute forever:

do
 statements
loop

Optionally the do loop can have conditional tests at the beginning or end of the loop (but not
both).

The variations for the do loop command are:
do [statements] loop
do while <condition> [statements] loop
do until <condition> [statements] loop
do [statements] loop while <condition>
do [statements] loop until <condition>

An example:

A = 0
do
 A = A + 1
loop while A<100

The difference between putting the conditional at the beginning or end of the loop is if the
conditional test (while or until) is placed after the loop command the loop will always be
executed at least once, even if the test is false. Placing the test before the do means the loop
does not get executed if the condition is false.

A = 5
do while A<3 ; this test is false
 A = A + 1 ; so this command never gets executed
 loop

do
 A = A + 1 ; this command will get executed once
loop while A<3 ; even though this test is false

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 47

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

select case
The syntax for the select command is:

select <expression>

 case <expression>

 [statements]

 case <expression1> to <expression2>

 [statements]

 case is <comparison operator> <expression>

 [statements]

 else

 [statements]

endselect

When no case expressions match, the else statements are executed.
When more than one case expression matches, only the first matching block will be executed.
Control then passes to the instruction following the endselect command.

An example:
a = 4
select a
 case 4
 LedRed = on
 case is > 3
 LedGreen = on
 case 1 to 7

LedBlue = on
endselect

Here, all three case expressions match, but only the Red LED will light up.

a = 4
select a
 case 5
 LedRed = on
 case 1 to 3

LedGreen = on
 else
 LedBlue = on
endselect

Here, none of the case expressions match, so "else" bock will execute (the Blue LED lights up).

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 48

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Select/case may also be used with strings

select <string variable>

 case <string constant>

 [statements]

 case <string constant>

 [statements]

 else

 [statements]

endselect

For example

string cmd[100]

cmd = “green”

select cmd
 case “red”
 LedRed = on
 case “green”
 LedGreen = on
 case “blue”

LedBlue = on
endselect

This will light up the green LED.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 49

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Serial ports

dScript Modules may implement one or more serial ports, these are declared at the start of
your program. Because it takes time to send data out over a serial port we provide each port
with both receive and transmit FIFO (first in first out) buffers. Once declared a serial port will
receive and transmit in the background. Received data will be placed in the Rx Fifo ready for
when your program wants to fetch it. Transmit data can be sent to the Tx Fifo and will then be
sent out in the background. You decide how big these Fifo buffers are, up to the limit of
available RAM. The default format for a newly declared serial port is 9600 baud 2 stop bits.

serialport Name PortNumber RxFifoSize TxFifoSize
serialport LCD05 1 10 90

Name
The first parameter is the port name. This is the name you will use to refer to this serial port in
the rest of your program. In the above example we will connect an LCD05 display module, so
naming the port LCD05 provides a descriptive name to make the program more readable.

PortNumber
Some modules may have three serial ports numbered 1, 2 and 3. This selects which physical
port to use.

RxFifoSize
This is the size of the receive or Rx FIFO. Here the LCD05 will only ever send a few bytes back
in response to a command, so 10 bytes is plenty.

TxFifoSize
This is the size of the transmit or Tx FIFO. In the case of the LCD05 which is a 20x4 character
display, we want to send a complete screen of data plus a few control codes as well, so the size
is set to 90 bytes.

The above example names serial port 1 as "LCD05" with an Rx buffer size of 10 bytes and a
transmit buffer size of 90 bytes.

Writing data to a serial port
The "Write" command is used to send serial data. The syntax is:
mySerialPortName.Write(<string name>, <start position>, <number of bytes to send>)

Data to be written to the serial port should be placed into a string - think of it as a byte array
of the data to send.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 50

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

string s1[100]
serialport LCD05 1 10 90
 s1 = "Hello World"
 LCD05.Write(s1,0,11)

Here we are sending 11 bytes from string s1 beginning at the first location (string indexes are
zero based) to serial port 1 which we have named as LCD05.

A better way is to place the byte count into the the write command is to used the string length
parameter.
 LCD05.Write(s1,0, s1.Length)
The length of a string is the number of bytes up to and excluding an 0x00 value. This 0x00 is
automatically placed at the end when you assign text to a string.
S1 = “Hello”
will require 6 bytes, placing the 5 characters of the text in positions 0-4 of the string. Position
5 will be 0x00.
S1.Length will return 5.

Sometimes you will want to include some non ASCII commands. In the case of the LCD05 you
might want to send initialisation or cursor control commands. Here's our “hello world” example
again, this time we have put three spaces in front of the text.

string s1[100]
serialport LCD05 1 10 90
 s1 = " Hello World" ; three spaces before the text
 s1[0] = 12 ; LCD05 command to clear screen & home the cursor
 s1[1] = 19 ; LCD05 command to turn backlight on
 s1[2] = 4 ; LCD05 command to hide the cursor
 LCD05.Write(s1,0,s1.Length)

After loading the “Hello World” text into s1, we then replace the three spaces with our LCD05
commands. The LCD05 will clear the screen and set the cursor position to the top left. It will
turn the backlight on and then hide the cursor. The “Hello World” text will then be printed
starting at the cursor position (top left of the display).

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 51

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Reading data from a serial port
The "Read" command is used to read serial data, the syntax is:
mySerialPortName.Read(<string name>, <start position>, <number of bytes to read>)

Data read from the serial port is placed in a string - think of it as a byte array holding your
incoming data. The following program will read and display the firmware version number of the
LCD05.

 S1[0] = 15 ; LCD05 command to read firmware version
 LCD05.Write(s1,0,1) ; send it
 threadsleep 5 ; wait for data to arrive
 LCD05.Read(s1,0,1) ; get it.
 C = s1[0]
 s1 = " LCD05 V" ~ C ; format for display – note the two leading spaces
 s1[0] = 2 ; for the set cursor command
 s1[1] = 41
 LCD05.Write(s1,0,s1.Length) ; display the version number

The number of data bytes available in the receive buffer can be read with
serialport.BytesToRead. Instead of sleeping for 5mS we could have written:

do
 C = LCD05.BytesToRead ; get number of bytes in receive buffer
while C < 1
There are two serial port transmit buffer parameters:

serialport.BytesToWrite will return the number of data bytes in the transmit buffer that are
still to be transmitted.

serialport.BytesAvailable will return the number of free bytes in the transmit buffer that you
can write to.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 52

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Baud rate
The default serial parameters are 9600, no parity, 2 stop bits. The baud rate can be changed
with serialport.BaudRate = <new baud rate>

serialport RS485 2 100 200
RS485.BaudRate = baud34800 ; change baud rate to 34800

baud38400 is a predefined baud rate. The full list of predefined common baud
rates are:
baud1200 (16666) 1200 baud
baud2400 (8332)
baud4800 (4166)
baud9600 (2082)
baud31250 (639)
baud34800 (520)
baud57600 (346)
baud115200 (173)
baud250k (79) 250000 baud
baud500k (39)
baud1M (19) 1000000 baud
baud2M (9)
baud4M (4)
baud5M (3)
baud10M (1)

The numbers in brackets are the actual divisor values used to control the baud rate. If you
need a special baud rate within the above range you can calculate this using the formula:

divisor = (20000000/<baud rate>)-1

solv534r5t8=-0987654321` `q1whj divisor = (20000000/9600)-1 = 2082.333 (2082 with

n error of 0.016%)6
+10

If you needed 62500 baud:
divisor = (20000000/62500)-1 = 319 (with an error of 0%)
RS485.BaudRate = 319; sets 62500 baud

The baud rate can also be read back.
Baud = RS485.BaudRate
The value read back is the divisor value (the numbers in brackets in the above definitions).

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 53

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Stop bits
The default is 2 stop bits.

serialport RS485 2 100 200
RS485.StopBits = 1 ; set 1 stop bit
RS485.StopBits = 2 ; set 2 stop bits

Only 1 or 2 is allowed, any other value is ignored and StopBits will remain unchanged.

Break
Some systems require a "break" to be transmitted as a start of frame marker. A break is
defined as the Tx line low for longer than one character frame. The break time used by dScript
is 18 bit times. For Example a baud rate of 19200 has a bit time of 52uS. We therefore send a
break of 18*52uS = 936uS.

A break is not queued in the transmit FIFO. It is initiated immediately only if the transmit FIFO
is empty. If there is a transmission in progress when the break is requested it will be ignored.
You should check all previous transmissions are complete by checking BytesToWrite is zero. To
start the break use serialport.SetBreak(). While the break is in progress reading RS485.Break
will return 1 (on). It will change to 0 (off) when complete.

 do loop while RS485.BytesToWrite > 0 ; wait for last Tx to go
 RS485.SetBreak() ; send the break
 do loop while RS485.Break == on
 < send data bytes >

Parity
Parity can be set to none, odd or even by setting 0, 1, or 2
Default is no parity.

RS485.Parity = 0 ; no parity
RS485.Parity = 1 ; even parity
RS485.Parity = 2 ; odd parity

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 54

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

TCP/IP ports
Both client and server tcp/ip ports are available. The difference between them is that a client
port initiates communication while a server port listens for an incoming connection. Both are
capable of transmitting and receiving. The internal sdrt6

T/*/IP buffer size is 512 bytes.

TCP/IP server
To operate a tcp/ip server the module will require an IP address and a port number to listen
on. The default IP address is 192.168.0.123 and the default mask is 255.255.255.0. If you
have a DHCP server on your network (most probably your router) then the module will use the
IP address issued by that server. In that case the default IP is not used. However it is more
likely you will want to use a fixed IP of your own choosing. Defining your own IP address
overrides both the default and DHCP addresses. The following code will assign the IP address
and mask:

tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"

The port number is assigned the same way:
tcpip.port 17494

Note that as this is a server, you do not need gateway or DNS addresses. The server never
needs to go out on the network, it just responds to incoming connection requests.

To receive and process incoming messages you will need to set up a thread like this:
thread myThreadName(tcpip)
for example:
thread TcpipCmds(tcpip)

The tcpip type informs the compiler that this thread will be triggered when a tcp/ip message
comes in. To receive the incoming message you need to define one integer and one string
variable.
int32 tcpLength
string tcpBuf[1024]

The thread will be:
thread TcpipCmds(tcpip)

tcpip.Read(tcpBuf, tcpLength)

<Process Message>
.
threadsuspend

endthread
The read command will read the incoming message into the supplied buffer and report the
length in the supplied int32, this is to notify you how many bytes have arrived. You do not
need to check for an incoming message, the thread will start automatically as soon as it

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 55

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

arrives. After you have finished processing the message just suspend the thread, it will start
again from the beginning when a new message arrives.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 56

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Here is a simple tcp/ip server example which just increments the first byte of the message and
sends it back to the client.

tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"
tcpip.port 17494

int32 tcpLength
string tcpBuf[1024]

thread TcpipExample(tcpip)
 tcpip.Read(tcpBuf, tcpLength)
 tcpbuf[0] = tcpbuf[0] + 1
 tcpip.Write(tcpBuf, tcpLength)
 threadsuspend
endthread

thread main(const)
 threadstart TcpipExample
 threadsuspend
endthread

The server uses tcpip.Write() to respond to the incoming connection. The two parameters are
the string containing the data to send and the number of bytes to send. ie.
tcpip.Write(myResponse, 5).

Note. tcpip.Read and tcpip.Write are used in the server code only, they are not used by tcp/ip
client code.

Further examples.

Have a look at the tcpipServer1 example in the example folder. This will demonstrate how to
set up a tcp/ip server program. For a more comprehensive example look at the tcpipServer2
example. When run on a dS3484 , this emulates most of the functions of our ETH484 module.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 57

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

TCP/IP client
The tcp/ip client can initiate a communication to a tcp/ip server, we will use an ETH002 as an
example. To do this you need to define a client port like this:

clientport ETH002 "192.168.0.96" 17496 5000

The first parameter is the name of the client port that you will use in your program to refer to
this port. In this case an ETH002, so that's what we will name it. Next is its IP or DNS address
followed by the port number. The last parameter is the timeout in mS that we will wait for a
response. You may define any number of client ports but there is only one socket so only one
port can be connected at a time.

If the ETH002 is on the same network, that is all that is needed. However if the ETH002 were
at another location on the internet, we also need to set up a gateway address.

tcpip.gateway "192.168.0.1"

In this case the gateway is the address of our router since that is how we get out to the wider
internet.

If you have created a server name for your target device, such as yardlights.ddns.net then you
will also need to set up a dns address such as:

tcpip.dns1 "192.168.0.1"
tcpip.dns2 "8.8.8.8"

The first is normally your router address since this will point to the dns given by your isp. Here
we have used Google's public dns server for the second one.

This example uses an analogue input on the dScript module to control an ETH002 relay which
could be anywhere on the internet.

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"
tcpip.port 17494
tcpip.dns1 "192.168.0.1"
tcpip.dns2 "8.8.8.8"
tcpip.gateway "192.168.0.1"

clientport ETH002 "yardlights.ddns.net" 17494 5000

analogport Adc1 1

digitalport LedBlue 33
digitalport LedGreen 34
digitalport LedRed 35

string clientOutBuf[10]
string clientInBuf[10]
int32 clientLength
int32 yardLightState

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 58

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

thread main(const)
yardLightState = 2 ; neither on or off to force initial setup
threadstart YardLightCtl
threadsuspend

endthread

thread YardLightCtl(100)
if Adc1>600 then

if yardLightState != on then
clientOutBuf[0] = 0x20 ; Relay Active
clientOutBuf[1] = 1 ; Relay 1
clientOutBuf[2] = 0 ; not timed
ETH002.Write(clientOutBuf, 3, clientInBuf, clientLength)
if clientLength == 1 then

if clientInBuf[0] == 0 then
yardLightState = on
LedBlue = on
threadstart FlashRedLed

endif
endif

endif
elseif Adc1<400 then

if yardLightState != off then
clientOutBuf[0] = 0x21 ; Relay Inactive
clientOutBuf[1] = 1 ; Relay 1
clientOutBuf[2] = 0 ; not timed
ETH002.Write(clientOutBuf, 3, clientInBuf, clientLength)
if clientLength == 1 then

if clientInBuf[0] == 0 then
yardLightState = off
LedBlue = off
threadstart FlashRedLed

endif
endif

endif
endif
threadsuspend

endthread

thread FlashRedLed(const)
LedRed = on
threadsleep 300
LedRed = off
threadsuspend

endthread

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 59

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Further examples.

For an example of a tcp/ip client, have a look at the multimodule example. Here we use a
dScript module as a client to send commands to an ETH008 (which is a server).
Note. The commands tcpip.Read and tcpip.Write are NOT used for client code, they are used by
server code only. In client code the name of the client port is used instead. The client does not
have a read command, we use ETH008.Write to both send a message to the ETH008 and get
its response.

ETH008.Write(TxBuf, 1, Rxbuf, Count)

The four parameters are the buffer containing the data to send, the number of bytes to send, a
buffer to receive the response (can be the same buffer if you don't mind it being overwritten)
and an int32 variable to receive the count of bytes in the response.

Reading the MAC Address

Reading the MAC address can provide your program with a globally unique number that you
can use as a serial number or identifier.

string s1[100]
string s2[10]
tcpip.ReadMacAddr(s2)

This will read the 6 byte MAC address into the string s2.

If you want it formatted in the traditional way as 6 hex bytes separated with a : character.

s1 = {h02} s2[0] ~ ":" ~ {h02} s2[1] ~ ":" ~ {h02} s2[2] ~ ":" ~ {h02} s2[3] ~
":" ~ {h02} s2[4] ~ ":" ~ {h02} s2[5]

To display the result on an LCD05:

LCD05.Write(s1,0,s1.Length)

and you will get:
D8:80:39:BC:E6:4A (or whatever your MAC address is).

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 60

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

UTC clock
Coordinated Universal Time (UTC) is an international time standard. Your internet connected
module has access to this time by using its UTC port. To use the UTC port add the following in
your dScript header area.

UTCport UTC 0 1

The first parameter (UTC) is the name of the port that you will use in the program to refer to
it. The second is the time zone offset. Here in the UK we want to use GMT so just set this to
zero. Most of Europe are on CET (Central European Time) which is 1 hour ahead of UTC so this
would be set to 1. The time zone offset can include minutes. For example India which is UTC
+5:30 would use:

UTCport UTC 5:30 0

The third parameter is a flag for daylight saving time. This only works for countries that put
the clock forward 1 hour on the last Sunday in March, and back 1 hour on the last Sunday in
October. Set to 0 for UTC or 1 for UTC+daylight saving time.

Accessing the time is done by reading the 7 UTC port variables.
UTC.Year This is 0 - 99. For the year 2015 it will be 15.
UTC.Month 0 - 11 for January to December.
UTC.Day 1 - 31 for the day of the month
UTC.Wday 0 - 6 for Sunday to Saturday.
UTC.Hour 0 - 23
UTC.Minute 0 - 59
UTC.Second 0 - 59

Note that after powering up the module it takes 15-20 seconds to synchronise with internet
time servers, during this time all the above will read zero. The following will display the date
and time on an LCD05.

Take a look at the provided “Time” example which displays the current time and date on an
LCD05 module.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 61

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

HTTP web server
Using the dScript web server, you can write and upload your own web pages to the module.
Your website can display your own variables in any manner you choose, using AJAX techniques
to keep the variables live and updated. You can use buttons on the web page to control things
on the module and, of course, your own branding applied to the page. You can use CSS to
format your website and include any images, logo's required. Modules have at least 2MB of
storage for web pages.

Note that all web files (html, css, javascript, pictures etc) must be stored in one directory. The
web compiler does not support a directory structure with multiple levels.

Lets start with a very simple web page, this will be a single button on the page called "Yard
Lights". The following html should be saved as index.htm and stored in a webpage directory on
your computer.

<!DOCTYPE HTML>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Dweb Simple Test Page</title>
</head>
<body>
 <button>Yard Lights</button>
</body>
</html>

For convenience we will want our module at a fixed IP address, so also save the following
dScript program.

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.137"
tcpip.mask "255.255.255.0"

thread main(const)
 do
 loop
endthread

It just sets the IP address and mask, make sure your computer is on the same subnet
(192.168.0.xxx in this case). The do loop is currently empty as we have no program to run
yet. Make sure the web page directory is selected using the blue world web symbol in the
menu bar, then load your program.

Type 192.168.0.137/index.htm into your browser and you should see your button at the top
left. Note that our web server will (deliberately) NOT serve a default page. You must type in
the full page name that you want. Typing the IP address only will result in a file not found
error.

You now have your first web page up and running, so lets make that button do something. We

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 62

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

will use it to toggle a relay on the module. Also we will get the actual state of the relay from
the module and use this to set the button colour.
First we need to add the following to the dScript program to define the relay:

digitalport Rly1 1

so we have:

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"

digitalport Rly1 1

thread main(const)
 do
 loop
endthread

The button line on the web page needs some more code, change it to:

<button id="Rly1" onmousedown="newAJAXCommand('dscript.cgi?Rly1=2');">Yard
Lights</button>

We have given the button the id "Rly1" so we can refer to it to update the colour. We also
added onmousedown="newAJAXCommand('dscript.cgi?Rly1=2');"

The general format for changing something on the module is
"newAJAXCommand('dscript.cgi?name=value');"

Where a name is a defined resource in the dScript program and value is what you want to
assign to it. In the case of digitalport objects, 0 will clear it, 1 will set it and 2 will toggle it.
dscript.cgi is the file that processes these commands, you do not need to supply this file as it's
built in.

We also need to add just a little javascript to make it happen. It's a single function containing
one line of code (and the start/end script tags)

<script type="text/javascript">
function ajaxUpdate()
{
 document.getElementById('Rly1').style.backgroundColor =
 (getValue('Rly1')=='1') ? 'rgba(255,0,0,0.2)' : 'rgba(0,0,255,0.2)';
}
</script>

ajaxUpdate is a callback function you must include, it is called whenever new variable data
arrives from the module so you can update your web page.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 63

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

getValue('Rly1') is a function you call from within ajaxUpdate to retrieve the value of your
variables. The variable name must be identical to the one used in your dScript program.

The last thing to add is a call to startAJAX() after the web page has been loaded. Do this by
modifying the <body> tag like this:

<body onload="startAJAX()">

The new html page looks like this:

<!DOCTYPE HTML>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Dweb Simple Test Page</title>
</head>
<body onload="startAJAX()">
 <button id="Rly1" onmousedown="newAJAXCommand('dscript.cgi?Rly1=2');">Yard
Lights</button>

 Temperature is

<script type="text/javascript">
function ajaxUpdate()
{
 document.getElementById('Rly1').style.backgroundColor =
 (getValue('Rly1')=='1') ? 'rgba(255,0,0,0.2)' : 'rgba(0,0,255,0.2)';
}
</script>
</body>
</html>

The final items we'll add to this simple web page is a couple of variables, the temperature from
the on-board sensor and the input power supply voltage.

Add the following immediately below the button tag.

 Temperature: <div id="Temperature">?</div>
 DC Voltage: <div id="DCvolts">?</div>

Then add the following in the ajaxUpdate function immediately below the existing line.

 document.getElementById('Temperature').innerHTML =
 Number(getValue('Temperature')/10).toFixed(1);
 document.getElementById('DCvolts').innerHTML =
 Number(getValue('Volts')/10).toFixed(1);

In the dScript program we need to declare the two analogue ports, the two variables
Temperature and Volts and add a couple of lines in the do loop to calculate the temperature
and voltage from the incoming ADC values.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 64

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

analogport TSensor 100 ; on-board temp sensor
analogport PSU 101 ; DC power voltage

int32 Temperature
int32 Volts

 Temperature = ((TSensor*3223)-500000)/1000
 Volts = PSU*18369/100000

The final dScript program is:

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"

digitalport Rly1 1
analogport TSensor 100 ; on-board temp sensor
analogport PSU 101 ; DC power voltage
int32 Temperature
int32 Volts

thread main(const)
 do
 Temperature = ((TSensor*3223)-500000)/1000
 Volts = PSU*18369/100000
 loop
endthread

You now have a simple web page which you can toggle a relay and show the relay state by the
button colour, and display module temperature and incoming voltage.

The calculations for converting the analogue readings into into degrees C and volts were
derived like this:

The ADC gives a 10 bit (0-1023) result over the range 0-3.3v. The ADC is returning 3.3/1024
= 3.223mV/bit, or 3223uV/bit. The ADC value is therefore multiplied by 3223 to give us the
input voltage in uV. The temperature sensor gives an output of 10mV/degree C, or as we are
working in uV, 10000uV/degree C. The temperature sensor has an offset of 0.5v or 500000uV
so we need to subtract this from the result. Now we can divide by 10000 go give us the
temperature, as an integer, in degrees C. However we only divide by 1000 which means the
number is 10 times bigger than it should be. 21.5 degrees will be 215. We will use Javascript
in the browser to divide this by 10 and display the result to 0.1 degrees.

A similar trick happens with the input voltage. We use 4k7 and 1k resistors in series to divide
down the supply voltage to a safe level for the processor. So 12v will feed 12*(1/(4.7+1)) =
12/5.7 = 2.1v to the ADC. This will convert to 2.1/3.3*1024 = 652. We need change 652 to
12000000uV (or 12v), so we multiply by 12000000/652 = 18405. Because that is full of
rounding errors to make the numbers small and readable the actual answer is 18369.
12000000/(((12/5.7)/3.3)*1024) = 18369.
So the voltage is PSU*18369uV. We can divide this by 1000000 to get the volts, however as

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 65

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

with the temperature, we only divide by 100000 to give a result 10 times larger. Again,
Javascript will divide this by 10 and display the result to 0.1 volts.

Web page security
Now that you can control your module from any browser on any PC/Laptop/Tablet/Phone from
anywhere on the planet, what is to stop anyone who knows your incoming IP address from
opening your gates, turning lights on or your heating off and generally messing up your life?

Well one way is to change the web page file name from "index.htm" to something harder to
guess. How about "EyRz2G5xXu94e.htm". This is almost like using the file name itself as a
kind of password. Actually this is pretty good security and I recommend you use it. It is called
"security by obscurity", but on its own is still not quite good enough. It is not safe from the so
called "man in the middle" attack. This could be when using a cafe/hotel wifi. The web traffic
could be monitored and your page name become visible: no more security. Even someone
looking over your shoulder could be enough to compromise security.

Web pages could be secured with a password. However unless an SSL connection is used, that
password is transferred as plain text and offers no real protection. We could use password/SSL
in combination. That would be secure, but at the cost of huge inconvenience.
1. The SSL firmware would add extra cost to every module.
2. You would need to purchase a secure certificate for every module, or use a self signed
 certificate and dismiss the browser warning every time.
3. Every time, you would still have to enter your username and password.

We wanted a solution that did not add cost or inconvenience to the operator. One where you,
and only you, can go straight to the web page and view status or make changes.

Our solution is to store a password on your browser. Only your device/browser combination
can access the web pages. In operation this password is never transferred over the network.
The server sends three independent random numbers which select three random characters
from the password, these are hashed and the hash stored as a cookie. It is this cookie that
enables the web page to be displayed, the cookie is then deleted when the browser is closed
and also invalidated by the server after a few seconds of inactivity or when you log out. Your
web page will likely be updating variables continuously so the page will stay alive as long as
you are viewing it.

To add security to our simple web page, add the following to the dScript program header
section:

html.password "bQq#dm@$%^5*xZ5tY0wN!fi38H_Y3"

The password can be anything you want from the ASCII character set in the range 32-126
(0x20-0x7E) excluding " which is the string terminator, and up to 200 characters in length.

With the password in place all requests for pages will require authorisation. If your browser
has the password stored in it, the page will be served. If not, then you will see a page which
says you are not authorised to view it.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 66

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Installing the password on your browser

Add the following below the html.password line:

html.setup on

This command will enable a built in web page that loads the password into your browser.
Here is the complete dScript program for our simple website demo.

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.137"
tcpip.mask "255.255.255.0"

html.password "bQq#dm@$%^5*xZ5tY0wN!fi38H_Y3"
html.setup on

digitalport Rly1 1
analogport TSensor 100 ; on-board temp sensor
analogport PSU 101 ; DC power voltage
int32 Temperature
int32 Volts

thread main(const)
 do
 Temperature = ((TSensor*3223)-500000)/1000
 Volts = PSU*18369/100000
 loop
endthread

Load this into the module and navigate your browser to (in this case)
192.168.0.137/_pw.htm

This built in file _pw.htm contains your password and the javascript needed to load it into the
local storage on your browser. When done you can go to

192.168.0.137/index.htm

Now you, and only you, can see your webpage.

Don't forget to change html.setup on to html.setup off (or delete that line) to disable
access to the password setup page _pw.htm.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 67

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Logging out.
To log out add the following to the html on your page:

Log out

_loggedout.htm is a built in file that contains the “Logged out” message and a small piece of
javascript to delete the authorisation cookie. More importantly, the filename is recognised by
the module as a special file and it will invalidate the associated authorisation code.

Here is the index.htm file with the log out code included:

<!DOCTYPE HTML>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Dweb Simple Test Page</title>
</head>
<body>
 <button id="Rly1" onmousedown="newAJAXCommand('dscript.cgi?Rly1=2');">Yard
Lights</button>

 Temperature: <div id="Temperature">?</div>

 DC Voltage: <div id="DCvolts">?</div>

 Log out

<script type="text/javascript">
function ajaxUpdate()
{
 document.getElementById('Rly1').style.backgroundColor = (getValue('Rly1')=='1') ?
'rgba(255,0,0,0.2)' : 'rgba(0,0,255,0.2)';
 document.getElementById('Temperature').innerHTML =
Number(getValue('Temperature')/10).toFixed(1);
 document.getElementById('DCvolts').innerHTML = Number(getValue('Volts')/10).toFixed(1);
}
</script>
</body>
</html>

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 68

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

If you wish, you can write your own _loggedout.htm file and load along with your other web
pages. It will be used in preference to the built in file. It must be named _loggedout.htm
otherwise it will not be recognised by the module as a special file to delete the authorisation
cookie. Also to delete the cookie on the browser you should include the javascript:

<script>
 document.cookie = "authorisation=; expires=Thu, 01 Jan 1970 00:00:00 UTC";
</script>

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 69

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Accessing your Webpage from the internet
Here's the problem:
You have your webpage up and running on your local network, for example 192.168.0.150,
and you can access the webpage and control the module.
You just go to 192.168.0.150/index.htm, and the page is there.

However you can't get directly at that page from your phone when you are away from home.
You can't access it on 192.168.0.150 because your network is not publicly accessible, its a
private network address. You will have another IP address. This is the one your ISP gave you
for your internet connection, and is the public IP address of your router on the internet. If you
don't know what it is you can type “my ip” into Google's search bar and it will tell you. This is
the IP address you will use to access the modules webpage.

Everything on the internet uses an IP address and a port number.
When you access a webpage in your browser all you enter is the IP address (or more likely a
domain name, but its ultimately translated to an IP address). You don't normally have to enter
a port number but its still required. Your browser simply uses the default port number, which is
80 for the web, unless otherwise specified our modules also use port 80 for the webpage.
However its a good idea to use a different port number for our boards as will will avoid conflict
with any web server you may have on your network.
Pick a number, I'll choose 19321 as our port number. Just make sure its different from the
TCPIP.port number.

We need to tell the module what the new html port number is. Do that by including the
following in the dScript program:
html.port 19321 ; change webpage port number from the default of 80

After you have re-loaded the program you can access the webpage with:
192.168.0.150:19321/index.htm

Note that as we have changed the modules html port we need to tell the browser how to find
the page with the new port number. Do that by inserting a ':' character and the port number
between the IP address and the page name as shown above.

Assuming your routers internet IP address is 86.87.88.89 (I made that up – replace with your
actual IP address) you will access the page from anywhere with address:
86.87.88.89:19321/index.htm

However first you have to set up your router to do that.
It's called “port forwarding” or “virtual server”, but whatever your router calls it, you need to
set it up so that all incoming connections on port 19321 are forwarded to port 19321 on local
IP address 192.168.0.150.

Unfortunately there are so many routers out there we cannot give details on all of them. You
should consult your routers manual or search Google for details on your specific router.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 70

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Email

Emails can be sent from your dScript program to alert you to any events you chose. Emails are
sent in plain text, not SSL/TLS.

To send emails from your own domain, you need to set up an email account for your board to
use. We set up an dS3484 account on our devantech domain for the test. The following 5 lines
are added to the header section of the program.

email.from "dS3484@devantech.co.uk"
email.server "smtp.devantech.co.uk"
email.port 25
email.username "dS3484@devantech.co.uk" ; account was deleted after the test
email.password "iBa4t_31" ; don't use, it won't work

The above 5 lines define the account the module will use to send emails.
You will also need to set up the recipient address like this:

emailport Devantech "sales@devantech.co.uk"

You may have as many recipients as you wish:

emailport Devantech "sales@devantech.co.uk"
emailport MyFriend "myfriend@hisdomain.com"

Two string and one integer variables are needed to send the email. The string variables are
loaded with the subject and message text, the integer variable will receive the response code.
This will be zero if the email was sent successfully.

string Subject[100]
string Msg[200]
int32 Response

To send the email:

 Subject = "Gate sensor triggered"
 Msg = "Any additional information can go here"
 Devantech.Send(Subject, Msg, Response) ; send the email

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 71

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

If you do not have your own domain, Google provides a restricted free public smtp server at
aspmx.l.google.com. The catch is: you can only send emails to a gmail account, but as gmail
accounts are free its no problem.

email.from "dS3484@devantech.co.uk"
email.server "aspmx.l.google.com"
email.port 25

emailport Devantech "devantech15@gmail.com"

Note that username and password are not required or supplied above, and the recipient is a
gmail address.
A complete program example to send emails:

tcpip.hostname "dS3484"
tcpip.ip "192.168.0.136"
tcpip.mask "255.255.255.0"
tcpip.port 17494
tcpip.dns1 "192.168.0.1"
tcpip.dns2 "8.8.8.8"
tcpip.gateway "192.168.0.1"

email.from "YardController@My.Home"
email.server "aspmx.l.google.com"
email.port 25

emailport Devantech "devantech15@gmail.com"
emailport Personal "MyOwnAddress@gmail.com"

string Subject[100]
string Msg[200]
int32 Response
int32 EmailSent

digitalport IO1 41
digitalport IO2 42

digitalport LedBlue 33 ; Blue Led, sending email(s)
digitalport LedGreen 34 ; Green Led, success
digitalport LedRed 35 ; Red Led, failed

thread main(const)
LedGreen = off
EmailSent = 0
do

if IO1 then
if EmailSent==0 then

LedBlue = on
Subject = "Gate sensor triggered"
Msg = "Any additional information can go here"

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 72

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Devantech.Send(Subject, Msg, Response) ; send the email
Personal.Send(Subject, Msg, Response) ; another email
EmailSent = 1
LedBlue = off
if Response==0 then

LedGreen = on
else

LedRed = on
endif

endif
endif
if IO2 then

LedRed = off ; reset so we can send emails again
LedGreen = off
EmailSent = 0

endif
loop

endthread

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 73

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

EasyMail

Easymail is a very easy to use and secure email system for our modules.

To use easymail , place the easymail keyword in the header to declare the recipient. You may
have as many recipients as you wish.

easymail mySelf "me@example.com"
easymail notMe "notme@example.com"

You need a couple of strings for the subject line and message body.

string subject[100]
string message[500]
int32 eResponse

and you can send an email:

subject = "Main Gate Opened"
message = "Additional information can go here"
mySelf.Send(subject, message, eResponse)

The response code of sending the email will be in eResponse.
The codes are:
0 The email was sent successfully
non-zero The email failed

Easymail has a limit of 100 emails/hour/module. If you hit this limit your emails will be ignored
(they will fail with error code 11) until time allows more to be sent.

Easymail uses port 7200.
Normally routers only block incoming ports by default with outgoing ports left open, so
easymail will work ok. If you have a corporate system that blocks all outgoing ports then you
will need to open port 7200 to get easymail to work.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 74

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Multi-threading

What is multi-threading?

Multi-threading is the ability to run many parts of your program at the same time. It is like
having a separate CPU for each part, each running its own little program. Each part or section
of your program is called a thread. dScript is a native multi-threading compiler. Any number of
threads may be created, up to the limit of available RAM memory.

Threads are created with the thread declaration and finish with endthread, like this:

thread myFirstThread(1000)

int32 mySecondsCounter

mySecondsCounter = mySecondsCounter + 1

endthread

This tells the compiler that you are declaring a new thread called myFirstThread. The 1000
attribute means this thread will be triggered to run every 1000mS. Threads may run
constantly or in response to internal or external trigger events.

Endthread terminates the thread definition and suspends thread execution until it is triggered
again each second (1000mS). The next time it is triggered it starts again at the beginning.
This very simple thread therefore implements a counter which counts up by one each second.
dScript programs always have at least one thread. When a program starts it jumps to the
"main" thread. This is just another thread to dScript, and the only one to start running
automatically. All other threads you declare are created in the stopped state. They will not run
until they are started with threadstart. This will typically be done in “main”, but threads may
be started from any other running thread.

thread main(const)
threadstart myFirstThread
do
… other instructions …
loop

endthread

As with all threads, main should loop forever (as shown) or suspend itself with threadsuspend.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 75

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Thread commands.
thread, threadstart, threadsleep, threadsuspend, endthread

thread <name> (<trigger option>)
This is used to declare a thread, it is followed by the name of the thread. Trigger option selects
a way to automatically run the thread, the options are:

thread myFirstThread(const)
This thread is a constantly running thread and has no trigger options, if it suspends itself with
threadsuspend then it will not run again unless re-started by another thread.

thread myFirstTimer(500)
When a number is used as the trigger option, it is a time in mS. There are 1000mS in one
second, so this example runs every 500mS or half second. The thread should have completed
its task and have suspended itself with threadsuspend before the trigger event comes around
again.

thread myTcpipCmd(tcpip)
This thread will be triggered when an incoming tcpip packet arrives.

thread myInterrupt1(input 41)
Threads may be triggered when an input changes state. This example is triggered when the
input becomes active.

thread myInterrupt2(!input 42)
Putting a ! before the input will cause the thread to be triggered when the input goes inactive.

thread myInterrupt3(^input 43)
A thread may be triggered on both active and inactive transitions by putting a ^ before the
input.

thread pulseOutput(myVar)
This thread will be triggered when myVar becomes non-zero, The variable myVar must have
been previously declared. myVar must be reset to zero before the thread ends or it will
immediately re-trigger.

threadstart <name>
This is used to start a thread. Threads are created in a stopped state (not a suspended state)
and will not run until the threadstart command is issued. Note that threadstart will not actually
start the thread unless it is declared as a const thread. For all other threads it "arms" the
thread so that it will run on its next trigger event.

threadstart myFirstThread
This will arm the thread and make it ready to run. A const thread will start immediately. All
others will be armed and will run when their trigger event occurs.

threadsleep <time mS>
This causes the current thread to sleep for a number of mS. Threads which are sleeping do not

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 76

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

consume CPU processing time. When the time expires the thread will resume executing
instructions with the instruction immediately following the threadsleep command.

threadsleep 50
This will cause the current thread to suspend execution for 50mS

threadsuspend
This stops execution of the current thread. It may be used to conditionally stop a thread if
there is no more processing to do. The thread is suspended rather than stopped, it still
remains armed and will start over at the beginning on the next trigger event.

endthread
The end of the current thread definition. All threads must end with this.
If program execution reaches this point and the thread has not already been suspended, this
command will also suspend the thread.

main
The only thread you must have is "main". This is the beginning of your program and dScript
will automatically start running at "main" after a power up. "main" may be located anywhere in
your program, it does not have to be at the start. “main” is the only thread that is
automatically started by dScript. All other threads should be explicitly started within the
program. It must be declared as type “const”.

It is declared like this:

thread main(const)
…
do stuff
…
endthread

Note - Although threads are declared in a similar way to functions, the similarity ends right
there.
You cannot call a thread. They are started and then run independently.
You cannot return from a thread – there is no-where to return to. The one (optionally two)
“parameters” are to declare the thread type and stack size.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 77

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Performance

For those interested in how fast the module executes dScript commands, there is a system
variable (system.DespatchCounter) that counts up by one each time a dScript instruction is
executed. It counts all instructions in all threads so its a system total. The following program
will display the execution speed on an LCD05 module.

A timer thread is set up to read the system.DespatchCounter once per second, reading the
system.DespatchCounter will automatically reset it to zero. Therefore reading it each second
gives the total instructions executed in the last second. A loop in the main thread displays the
count on the LCD05.

If you run this program you may have a bit of a shock. It will say you are executing just 11
instructions per second, why so few?

dScript is a multi-threaded system, and those threads can be suspended (with the
threadsuspend command) or sleeping (with the threadsleep command). There are two threads
running, the Timer1 thread and the do loop in the main thread. The timer thread runs once per
second and has just two instructions. That accounts for 2 of our 11 instructions.

Take a look at the do loop in the main thread. It has two 500mS sleep instructions used to
flash the red led. So this thread also only runs once per second and has 9 instructions The “do”
is not an executable instruction, the compiler just notes its position for the “loop” instruction to
jump back to. In total just 11 instructions need be executed per second. This demonstrates the
power of dScript. By not wasting CPU time running around endless loops waiting for something
to happen, the CPU is available on demand when an event calls for service.

So how fast can it go?

To load the CPU to its maximum we need a thread that does not suspend or sleep, that just
keeps running forever. Notice that we have a thread called “AlwaysRunning” but its threadstart
command is currently commented out, so its not actually running yet. Remove the comment
and load the program again. Now you will see a massive increase in speed, over 50,000
instructions/second. That is running two reasonably complex calculation instructions in the
“AlwaysRunning” Thread, both of which includes an analogue to digital conversion, and the
loop instruction to do it again.

Now comment out the two calculation instructions just leaving an empty do-loop and run the
program again. This time you will see around 476,000 instructions/second.

A real program will contain a mix of complex and simple instructions and 100,000 to 200,000
is a reasonable expectation, however it does depend on the program. You can put your own
mix of instructions within the do-loop and see what you get.

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 78

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

digitalport LedRed 35

serialport LCD05 1 10 90

int32 Rate

string s1[100]

analogport TS1 100 ; on-board temp sensor
analogport PSU 101 ; DC power voltage

int32 BrdTemp
int32 Volts

thread Timer1(1000)
Rate = system.DespatchCounter
threadsuspend

endthread

thread AlwaysRunning(const)
do

BrdTemp = ((TS1*3223)-500000)/1000
Volts = PSU*18369/100000

loop
endthread

thread main(const)
threadsleep 100
threadstart Timer1

; threadstart AlwaysRunning

s1 = " Instruction Despatch"
s1[0] = 12
s1[1] = 19
s1[2] = 4
LCD05.Write(s1,0,s1.Length)

do
s1 = " Rate = " ~ {D6} Rate ~ " "
s1[0] = 2
s1[1] = 21
LCD05.Write(s1,0,s1.Length)

LedRed = on
threadsleep 500
LedRed = off
threadsleep 500

loop
endthread

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 79

http://www.robot-electronics.co.uk/

 dScriptdScript User Manual v4.04

Notes

Copyright © 2016-2019, Devantech Ltd.
All rights reserved.

www.robot-electronics.co.uk 80

http://www.robot-electronics.co.uk/

	Documentation History
	Please read!
	Important changes from previous versions
	Code migration to V4.xx from previous versions
	Threads
	gosub
	goto

	The cheat sheet, quick reference guide
	Introduction
	Getting started
	Support files
	Connecting the hardware
	First program
	Second program

	dScript IDE
	Version numbers
	Compiler
	Conditional Compiling
	Project structure
	Program Structure
	Declarations
	Instructions
	Comments

	Constant declarations
	Variables
	Local variables
	Integer variables
	Variable arrays
	String variables
	String parameters
	string.Length
	string.Size
	string.Mid(0,3)
	string.ToLower(0,3)
	string.ToUpper(0,3)
	string.GetNumAscii(Idx)
	string.GetNumBinary(Idx, 4)
	string.GetText(Idx)
	string.BooleanEval()
	string.CRC(length, polynomial)

	String byte arrays

	Non-volatile EEPROM variables
	Non-volatile Flash variables
	System Variables
	Functions
	Parameter passing

	Network Parameters
	Using variables for the network parameters.

	Analogue & Digital I/O channels
	Digital I/O
	Analogue I/O
	Flexible I/O

	Operators
	Arithmetic & bitwise operators
	Assignment operators
	Logical operators

	Expressions
	Numeric expressions
	String expressions
	Numeric variables in string expressions
	Decimal, hexadecimal and binary formatting
	Padding numeric output
	Formatting negative numbers
	Inserting control codes into a string

	dScript commands
	return
	if - single statement execution
	if - multiple statement execution
	for, next
	do loop
	select case

	Serial ports
	Writing data to a serial port
	Reading data from a serial port
	Baud rate
	Stop bits
	Break
	Parity

	TCP/IP ports
	TCP/IP server
	TCP/IP client
	Reading the MAC Address

	UTC clock
	HTTP web server
	Web page security
	Installing the password on your browser
	Logging out.
	Accessing your Webpage from the internet

	Email
	EasyMail

	Multi-threading
	What is multi-threading?
	Thread commands.
	main

	Performance
	Notes

